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of incidence. The (complex) resistivity of the sheet is a function of the gravimetric

moisture content Mg of the leaf, and for all moisture contents, the accuracy of the

resulting prediction is adequate for most practical purposes.

In their natural state leaves are not generally planar, and any curvature may

reduce their backscattering cross sections. I'o explore this effect, measurements have

been carried out using a rectangular portion of a coleus leaf attached to the surfaces of

styrofoam cylinders and spheres of different radii. For a wide range of curvatures, the

reduction in the backscattering cross sectio_ at X band is accurately predicted by the

physical optics approximation, and the results of a numerical evaluation of the physical

optics integral are almost identical to a Fresr_el integral expression derived from a

stationary phase evaluation.

2. Leaf Model

A leaf can be regarded as a thin, non-magnetic Iossy dielectric layer, and an

effective model for such a layer is an infinitesimally thin resistive sheet. The sheet is

simply an electric current sheet characterized by a (complex) resistivity R where

iZ
R- (1)

k_ i¢- 1)

Here, k and Z are the propagation constant _nd intrinsic impedance respectively of free

space, '_ is the layer thickness, ¢ is the compiex dielectric constant of the material, and a
i

time factor e -i(_t has been assumed and suppressed.

The dielectric constant s - s' + i¢" of a leaf is pdmadly determined by its



gravimetric moisture content Mg, and can be found using a Debye-Cole

dual-dispersion dielectric model [4]. The model predicts ¢' and _" in terms of the

frequency, temperature and Mg, and approximate empirical expressions valid at

X-band and room temperatures are available [3]. The accuracy is within +20%. The

thickness ,_of a leaf also depends on its moi._ture content and decreases with

decreasing Mg. In reality, however, the thickness generally decreases from base to tip

and may vary by as much as 50 percent over the surface. For a class of coleus leaves,

an approximate expression for the average thickness in terms of Mg was given in [3],

but for the coleus leaves used in the present study the thickness was measured at

several points using calipers, and the averages determined. It is worth noting that the

resulting resistivity of the leaf was in good agreement with the value of R measured

using a leaf section placed in a waveguide.

At X-band frequencies and above the physical optics approximation applied to

the resistive sheet model provides an accurate estimate of the backscattering cross

section of a planar leaf for all moisture contents and most angles of incidence. For a

sheet lying in the plane _ = 0 of a Cartesian coordinate system (_, q, 4) and illuminated

by a plane electromagnetic wave having

__i ^ ^ ^ e-ik (_co$$ - 11sin_)E = (_ sina sin_ + 11sine{ cos0 + _cos(:z) (2)

(see Figure 1), the induced electric current is

h

3 = 2Y {q sins l"H($) + _ COS(:ZcoS(l) I"E($)} eik_sir_ (3)

where [3]

3



2R )-1,rH( ) = 1

-1

 cos0)
F H and -F E respectively are the plane wave reflection coefficients for H polarization (o_

= _2) when the magnetic vector is perpendicular to the plane of incidence and for E

polarization (e¢= 0) when the electric vector is similarly inclined. Since R = 0

corresponds to perfect conductivity, ]"H and t"E show how the current differs from the

current Jpc supported by a perfectly conducting surface. Indeed,

3=Jpc" _I]"H($)+Jpc" _,FE($) (4)

where _ and _ are unit tangent vectors in and perpendicular to the plane of incidence

respectively.

3. One Dirnensional Curvature

In the Appendix expressions are dedved for the backscattering cross section of a

rectangular resistive plate of dimensions a, I:)as a function of the angle of incidence,

and we now examine the effect of giving the plate a constant radius of curvature p in a

principal plane. As a result of the bending, the plate conforms to a portion of the

surface of a right circular cylinder of radius p as shown in Figure 2.

If the flat plate has length a in the z direction and width b in the y direction, then

b = 2p$ o. The illuminating field is a plane wave propagating in the negative x direction

with



_i
E = (_ sin(z + ,_cos(z) e "ik(x"p) (5)

D

and in the backscattering direction the far field expression for the Hertz vector = is

9+ $o

e ikx iZ f
;(_) =-_- 4,, ap,, 3 (_')

eikp (1 - cos$')

e - $o

d_'

where the phase origin has been chosen at the front of the cylinder. To ensure that no

portion of the outer surface of the plate is shadowed, it is necessary that lel-<_-- %.

The resistive sheet current J is given by (3) with the identification

_ _,, _=_^. ^ ^= xs,n_'._.ycos_', _,=z.

Recognizing that the exponent in (5) is simply the incident field phase at the surface,

( }3($') = 2Y (- _ sinS' + _ cos$') since I'_._($')+ _.coso_cos$' ]-'E($') e'kp0 "cos_'),

and hence

6+$ o

'°" I{"_(_)= _x ap. (-x_n¥
2_

O - $o

^ ^ }+ ycos$'it sincer' H ($') + z cosor, cos$' ]"E (_')

2ikp(1-cos$')
e d¢'.

The resulting backscattered far field amplitude is

0 +$o

=ik2ap f (_'sinccI"H($')+_'COSQI"E($')} COS$'e2ikp(l"c°s_"d$ '
2_

O - $o

(6)

5



in terms of which

2

/¢

I i'
%ross = = (_ co_(z-,_ sin(z). (8)

Two methods were employed to evalu_-_tethe integral expression (6) for S. In the

first, the arc e - ¢o < ¢' < e + ¢o was subdivided into 2M segments and each replaced

by a planar strip of width & = p¢o/M centered at ¢' = ¢'m, m = 1,2 ...... M, and

tangential to the cylinder. From the formula (A.3) for the backscattered far field

amplitude of an inclined plate, we then have

2ikp(1 - co._'m)sinU'= ik2a_ {_ sina H(¢ m) + _"COSECE(¢ m)} COS¢'me U'F ' F ' (9)
2_ m-1

with U' = k3,sin¢' m. The summation was carried out numerically, and a comparison

with data obtained from a moment method solution of the integral equation for a curved

resistive strip is given in Section 5.

The second method is entirely analytical and is based on the stationary phase

(SP) approximation. The SP point of the integral in (6) is $' = 0 and on the assumption

that kp >> 1, with e < ¢o so that the SP point lies within the range of integration,

6



2_

where

'=eiU2
_'('t)= j* du (10)

is the finite range Fresnel integral. We remark that for I1:1<< 1

t'(1:) = 1:+ o(1:3), (11)

whereas for I1:1>> 1

1 i¢/4
T(1:)- 74r__e (12/

Since FE(0 ) = T'H(0 ) it now follows that

_= ik._a_ (_sjn(_+ 7. cos(z)r H (0)_" [_ (*o+e)]+E [_p (_0-e)])(13)
2=

showing that to this approximation there is no depolarization in the backscattering

direction.

It is instructive to examine separately the special case of symmetric (normal)

incidence when 8 = 0. The argument of the Fresnel integrals in (13)is then b/2 _"p', and

if p>> kb2/4, the approximation (11) implies

"_ = ik2ab (_ sin(z + _ cos(z) FH(O), (14)
2_

in agreement with the known expression fo_"the backscattered far field amplitude of a

planar resistive plate at normal incidence. On the other hand, if p << kb2/4, (12) gives



I_ _ "i_--
_ 4

=- _ (_ sino¢+ ;; cos¢x)FH (0) e

which is the result for a resistive circular cylinder of radius p and length a. For

intermediate values of p the Fresnel integrai must be retained, and when the far field

amplitude is normalized to the flat plate expression (14), denoted by the affix fp,

s.. Zr( ) (15)
S fp 7

independent of the resistivity, where

P

Calculations based on the formulas (9), (13) and (15) are compared with

numerical results obtained using the momer_t method and with measured data in

(16)

Section 5.

4. Two Dimensional Curvature

We now consider the effect of giving tl'_e plate the same curvature in both

principal planes, so that the plate conforms to a portion of a spherical surface of radius

r. For simplicity the analysis is carded out for a plane wave incident symmetrically, and

the geometry is then as shown in Figure 3.

In terms of the spherical polar coordinates r, 0', $' such that x = rsine'cos$',

y = rsine'sint_' and z = rcose', the plate occupies the surface region _- - e° < e' < _- + eo,

-f(e') < $' < f(e') where 0o = b/(2r) and f(e') = W(2rsine'). The incident electric field is the

8



same as that in Section 3, and for a perfectly, conducting plate the physical optics

expression for the induced electric current _t a point e', _' on the surface is

_r= = 2Y_sina. sine'(-:_ sinS' + } cos$') + c,,so_(-_ cose' + _,sine'cosS')_ e ikr(1- sine'cos_')

Unit vectors tangential to the surface and p_rallel and perpendicular respectively to the

plane of incidence are

11̂1 = Q { "_ (1 - sin2e ' cos2_ ') + _ (sine' sin_' + _.cose') sine' cost_'},

1 = Q (-_ cose' + } sine' sinS')

where

^ ^

and in terms of T11 and _ 1

Q = (1 - sin2_]' cos2--_')-1/2,

the perfectly conducting plate current is

^

_ = 2Y{(sino_ sine' sinS' + cosec cose') rl 1 - sine' cos$' (sinec cose'

- cosec sine' sin,t_')_ +} Q eikr(1-sine'cose')

From (4) it now follows that for a resistive plate the current is

3 = 2Y{(sinec sine' sin$'+ coseccose') FH($) _11 "sine' cos¢' (sineccose'

- cosecsine' sin#') ["E(O)_ 1} Q eikr(1"sine'cosO') (17)

where the angle $ is such that

cos$ = sine' cos$'.

In the backscattering direction the far field expression for the Hertz vector _ is

9



+ eo f(e')
ikx

_(x) e iZr2 f /_(e''¢')eikr(lsine'c°'_')=k,x 4/_ sine' de' d$',

__.eo -f(e')2

and when the formula(17)forJ isinserted,the backscatteredfarfieldamplitudeforthe

curved resistiveplateisfound to be

+ eo f(e')

ik2r2 ! /
= _ sino__ {sin2e ' sin+;(1)' FH($) + COS2e, FE((I))}

" o -f(e')

+ coso_£,{sin2e ' sin2_ ' FE((_) + COS2e ' FH(_)) }

+ (cosa _- sino_ _.) sine' cose' ,,_;in$'{FE($) - FH($)}I

Q2 sin2e, cos$' e 2ikr(1sine, cos+.)de,d$'. (18)

The like- and cross-polarized backscattedng cross sections can be computed by

substituting (18) in (7) and (8), and depolarization occurs to the extent that F H and F E

differ over those portions of the plate that contribute to the integral.

The expression for _ was evaluated using methods similar to those employed in

Section 3. The first method is numerical. By subdividing the e' and $' ranges into 2L

and 2M increments respectively and treating each elementary patch as a rectangular

flat plate centered at e' -- e'E, $' = $'m (E = 1,2, .... L; m = 1,2 ..... M) with dimensions

A1 = rAe', A2 = rsine'2 AS' where A8' = eo/L and A_' = f(e')/M, the result is

=-- [
2/I; _..1 m=1

2ikr (1 - ¢ese'l.¢es0'rn)sinU 1 sinV 1
] &lzX2 Q2 sine't cos$' m •

U 1 V1
(19)

1()



Here

U 1 = kAlCOSe'_, cos$' m

and [

V 1 = k3,2 sinS'm

] denotes the terms in square brackets in (18).

The second method is based on the siationary phase approximation. The

(double) SP point of the integrand in (18) is 9' = _/2, $' = 0, and when all the

non-exponential terms are removed from the integrand at this point, we have

= _=L'2r2(Y sino_+ _.cos¢) ["H(0)
2_

+eo f(e')

S _ e2ikr(1 - sine'c°s_') d0, d_,

where we have used the fact that ['E(0) = Ftt(0 ). By expanding the exponent about the

SP point and retaining only the quadratic terms, we then obtain

= "'_-'2ikr_' si not,+ _.cose,)'._°> " t'_,4;J"' "' "_-'',,_v;,./;-"/ (20)

showing that to this approximation there is no depolarization.

normalized to its flat plate value (14) is

---s =1._-(1'1) • v(1'2)
S_ 1'1 1'2

The amplitude

(21)

independent of the resistivity where

1'1-- ' 1'2" ' (22)

11



and the reduction in Sfp is simply the produ_ of the factors appropriate to a

one-dimensional curvature in each of the principal planes of the plate.

The extension to the case of a plane wave which is not incident symmetrically is

trivial. If the plate is rotated through an angle e about the y axis (see Figure 3) with

lel 7-,./2- eo so that no part of the plate is sI_adowed, the far field amplitude

corresponding to (20) is

=--ikr (_ sino¢+ 7.cosec)I" H (0) _' ( ) (1+e)l
eo

(1
o

(23)

Here also the expression is a natural exten,,;ion of the formula for a one-dimensional

cu rvat u re.

5. Comparison with Experimental Data

To test the validity of the resistive sheet model and to explore the effect of leaf

curvature, a series of measurements was carded out using rectangular leaf sections.

Coleus leaves were chosen because they retain their moisture after being cut: at room

temperature (23°C) the change in moisture content after 20 minutes was less than one

percent. The scattering measurements were made at X-band in a small tapered

anechoic chamber using an HP 8510A network analyzer. A schematic of the

equipment is shown in Figure 4, and the general procedures employed are described

12



in [3]. The only significant improvements m;ide to the original system were the

introduction of an automatic target positione_ to permit measurements at specified

increments in angle, and the use of strings .=;tretched between synchronously rotating

stepper motors at the top and bottom of the chamber to facilitate the target support.

Since a single linearly-polarized horn antenna was used to radiate and receive the

signals, only the like-polarized backscatteri_g cross section could be measured. A

small metal sphere was employed for calibr;_tion.

Some results for a plane rectangular .,_ection of a leaf having a = 1.33_. and b = 2X

with Mg = 0.7 and 1:= 0.5 mm are shown in Figures 5 and 6. E polarization (o_= 0) was

used in both cases. In Figure 5 the leaf wa_ initially vertical (_ = 0) and the data as a

function of the rotation angle $ are in good _zgreement with the curve computed from

(A.4). In Figure 6 the leaf was tilted back ([_= 8 cleg.) and a similar comparison with

(A.8) is shown. For completeness, the cro.,;s polarized cross section computed using

(A.9) is included in Figure 6.

With the confidence that physical optics in conjunction with the resistive sheet

model is adequate for planar leaves, we nc_wcompared the predictions for curved

leaves with moment method data and with experimental results. To check the accuracy

of (9), the scattering was computed using a two-dimensional moment method code [5]

for resistive strips extended to the three-dimensional case by assuming that the current

is independent of z, and in Figure 7 the bac,kscattering cross section computed using

(9) is compared with moment method data for a curved leaf having radius of curvature

13



p = 2_. and for a flat leaf (p = =). The over_ll agreement is good out to 50 and 70

degrees respectively, where the lower limit for the curved leaf corresponds to the onset

of shadowing. In Figure 8 the Fresnel integral approximation (13) is compared with (9)

for curved leaves having p = 2_. and 3Z. The agreement is excellent as long as the

stationary phase point is on the leaf, i.e. foi IOI < 28 and 19 degrees respectively, but

remains good for incidence angles out to al_out 45 degrees.

Experimental measurements were al_;o performed. In the first experiment a

rectangular leaf section of the same size a_ before was attached to the surface of a

right circular cylinder of styrofoam and the _lormal incidence backscattering cross

section was measured. Cylinders of six different radii were used and the cross sections "

were normalized to that of the planar leaf. The measured cross section reductions for E

polarization are plotted as a function of pFAin Figure 9 and compared with the curves

computed using the numerical summation _9) and the stationary phase approximation

(15). The agreement is excellent. As pFAdecreases from 11 to 1, _fincreases from 0.76

to 3.14. Over the entire range, (9) and (151 yield virtually identical results, and (15)

provides a simple and accurate expressio_ for the cross section reduction.

For the case of a two dimensional curvature a similar experiment was performed

in which a leaf section was mounted on the surface of a styrofoam sphere. Spheres of

six different radii were used. To facilitate the mounting a naturally-curved leaf was

chosen and cut to conform to the spherical region _. - 9o < 9' < _. + eo, "$o < $' < $o

where 0 o = b/(2r), $o = a(2rsineo), with a = 1.33;L and b = 2_.. The region is slightly

14



different from that specified in Section 5, and the leaf sections are no longer

rectangular when flattened out, but calculations based on the summation (19) showed

that the cross section reduction is the same for both. The measured data are compared

with the numerical and analytical results (19) and (21)in Figure 10. The agreement is

again excellent and confirms the validity of tl'_esimple formula (21) for curvature in two

dimensions.

As evident from the preceding figures, curvature can have a significant effect on

the backscattering cross section, and in a practical situation, it is important to know the

frequency range where any curvature of a le;_f must be taken into account. To this end,

Figure 11 shows the normal incidence cross section reductions versus frequency for

three leaf sections 6 cm on a side, curved in one dimension with radii 3, 6 and 12 cm.

In all three cases Mg = 0.7, t = 0.5 mm and the frequency dependence implied by (1)

and the Debye-Cole dielectric model was included. Once again (9) and (15) yield

virtually identical results and if, for example, o = 12 cm, the curvature produces a

significant effect only at C-band frequencies and above.

6. Conclusions

The resistive sheet model in conjunction with the physical optics approximation

which was previouslyshown [3] to accurately predict the backscattering cross section of

a planar leaf has now been extended to the case of a curved leaf. For a rectangular

section of a leaf curved in one and two dimensions, the physical optics expression for

the backscattered field as a function of the angle of incidence was evaluated

15



numerically and by a stationary phase appr(:)ximation. The latter leads to simple

analytical expressions for the cross section -eduction produced by the curvature.

Numerical results based on the two method; are virtually identical over a wide range of

incidence angles and in excellent agreemer_t with measured X-band data for

rectangular sections of coleus leaves applied to surfaces of styrofoam cylinders and

spheres of different radii. As a result of the,';e comparisons, it is concluded that the

curvature effect is accurately simulated by _ multiplicative factor involving a Fresnel

integral whose argument is a function of the relevant leaf dimension, the radius of

curvature, the frequency, and the angle of incidence, but independent of the material

properties of the leaf.

16



Appendix: Flat Plate Analysis

To illustrate the application of the formulas in Section 2, consider a rectangular

a b b
resistive plate occupying the region- + < _ < ._-, - _- < _ < _-of the plane _ = 0 and

illuminated by the plane wave (2) as shown in Figure 1. Since there is only an electric

current induced in the plate, the scattered field can be attributed to an electric Hertz

vector _. In the backscattering direction the f;_r field expression for _ is

ikr

;(_)= e iZ f.r J(11,_)e ikrlsin_d11d_"kr4=

where the integration is over the illuminated surface of the plate, and if the physical
m

optics approximation is employed, it is a trivial matter to determine _. From (3)

ikr a/2 b/2

! f f_'_sin_['H(+)+_,cosacos+FE(+)}e2i"n'ir_d_ldr,
2/1: J J "

-W2 -b/2

ikr { }sinUe iab _ sine¢FH ($) + _,coseccos$ FE($) "--U--
kr 2_

(A.1)

where

U = 1.3sin$. (A.2)

The scattered field is

mS m
E =VxVx_

and in the far field

ikr

where the backscattered far field amplitude is

17



sinU
. ik2ab _ (_ sin$+ T_COS$)sin(z rH(¢)+_ coSa rE(,)}cos,._5_.

2_

In terms of S the like-polarized backscattering cross section is

_--'_-I(t,_ s_o,+,__o,,:os,÷t,cos_,)._ I_
/t

and the cross-polarized cross section is

(_cross : " "

Thus

and

ab 2 sinU 2

o=4_ '1-_-{sin2A, or. ]"H (¢) +COS (Z r E (tp)} C0S$ ----0--- I

sinU 12
Gcro_ = 4= I a._b.bsin(z cos(z {]-'H($) " r'E ((I))} C0S$ .-.--_--, ,

(A.3)

(A.4)

(A.5)

and we observe that the cross-polarized return vanishes if at least one of sin(z, cosec, or

cos$ is zero or/'E ($) = ["H ($)- This last condition is satisfied for a perfectly conducting

plate.

The above example corresponds to the rotation of the direction of incidence in the

P,_Iplane and is equivalent to the rotation of t_e plate through an angle $ about the C,

axis with the illumination fixed in space. A more general situation is that in which the

plate is first tilted back through an angle I_ (s_e Figure A.1) prior to rotation. In terms of

a rotated coordinate system {', 11',_' where _' = _cosl_ + _sinl_, _' = _, _' = -_sinl3 + _cosl3,

a b _,bthe plate now occupies - 2 < _' < _-, - _- < -_:,and the incident electric field is



_i = (_ sinec sins + "_ sinec cosS + _ cos,:z) e "ik(_'cospcos¢- n' sir_ - _' sin_ cos_)

Since the unit vector normal to the plate is _', the physical optics expression for

the current that would be induced if the plat+_ were perfectly conducting is

Jpc = 2Y {- _ cosec sinj3 cos$ + 1_(sinec <:os_. cosec sin_ sinS)

+ (_COSec (;OS_ COSS} e ik(rl'sin$ + _'sin_ cos$),

which can be written as

where

Jpc = 2Y {(sinec cosl3 sins + cosec sinJ3)_i 1 * (sinec sinJ3 - cosec cosj3 sinS)

• cos_ cosS ! 1} P eik(rl'sin$+ _'sinl_cos$)

and

P = (1 - cos21; COS2S) "1/2

11 1 - P (" _ sin2p cosS. _ sin S . _ sinp cosJ3 cosS)

1 = P (" _ sin_ sins + T_sinp cosS- _ cosp sinS)

are, respectively, unit vectors in and perpendicular to the plane of incidence, lying in

the plane of the plate. The current induced in the resistive plate is therefore

1_)



3 = 2Y {(sine cosJ3sins + cosecsinJ3) l"H ($1)4 1 + (sine sinj3 - coseccosJ3sinS)

• cosl_ cos$ r E ($1) _ 1} P _jik(Tl'sin$, ;'sinp cos$) (A.6)

where $1 is the angle between the negative of the incident field direction and the

normal to the plate, i.e. cos -1 (cosl_ cos$).

The Herz vector defining the backscat_ered field is

ikr a/2 tY2

;(_)= e iZ f f _I(TI',_') e ik(n'_in¢+ _;'sinl]cos¢)
kr 4_._2._2

and when the integration is performed we obtain

eikr
_(_) = iab [(sineccos_ sins + cosec .=;inJ3)r' H($1) _kr 2_ + (sinecsinJ31

- coseccos_ sinS) cosJ3cos$1" E ($1) _ 1]P sinU sin.__VV
U V

where U is given in (A.2) and

V = kbsinl3 cos$.

The resulting expression for the backscattered far field amplitude is

2C}



= ik2a--b[(_sins+ _ cos$){sinec[cos;i!J3sin2$rH ($I)+ sin2_F E (SI)]
2_

+ cosec sinJ3cosl3 sinS [F8 (¢1)" FE ($1) }

2
+ _ {COSec[sin213 F H (S1) + CC'S 13sin2$ r E ($1) ]

+ sinec sin_ cosp sins [r' H (_)- ]"E ($1) ] } ] p2 cosj3 cos$ sinU sinV
U V

(A.7)

and we note that this reduces to (A.3) when 13= 0. The backscattering cross sections

are

=1ah._.{(sinec COSj3sins + cosa ShJ3)2rH($1) + (sinecsin_4=

-coseccosl3 sinS) 2 r E (01) } p2 cosl_ cosS sinU sinV I
U V

(A.8)

and

lab

Ocross= 4/t: I -_--(sinec COS_sinS + cos(, sinJ3)(sinecsinJ3- cosec cos_ sinS)

• {F H ($1) "rE ($1) } p2 cos_ cos 0 sinU sinV 12.
U V

(A.9)

As required, these reduce to (A.4) and (A.5) when 13= O, and for all _ the

cross-polarized return vanishes for a perfectly conducting plate. A comparison with

measured data for a leaf is given in Section 5.
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Figure Captions

Figure 1 :

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Geometry for the scattering of a plane wave from a resistive sheet lying in

the plane _ = 0.

Geometry for the scattering of a plane wave from a resistive sheet which

conforms to a portion of the surface of a right circular cylinder of radius p.

Geometry for the scattering of a plane wave from a resistive sheet which

occupies a portion of the surface of a sphere of radius r at normal
incidence.

Schematic of the RCS measurement system.

Comparison of the measured RCS with the theoretical expression (A.4)
for a rectangular section (a = 4 cm, b = 6 cm) of a cut coleus leaf with Mg =

0.7 and t = 0.5 mm for E-polarization ((z = 0), 13= 0 and _. = 3 cm.

Comparison of the measured RCS (***) with the theoretical expression
(A.8) (--) for the rectangular section of the coleus leaf with Mg = 0.7 and

'_ = 0.5 mm for E-polarization (c_= 0), 13= 8 deg and _. = 3 cm. The

theoretical cross polarized RCS (A.9) (xxx) is also shown.

RCS of a rectangular resistive :_heet computed using the moment method

(lines) and the numerical sumnlation (9) (points) for p = 2;L (---, xxx) and p

= 0o (_, 000). The size and resistivity of the sheet are the same as in

Figure 5 with t = 0.32 mm and ;L= 3 cm.

RCS of a rectangular resistive sheet computed using the numerical
summation (9) (lines) and the Fresnel integral approximation (13) (points)

for p = 2_. (---, xxx) and p = 3_. (_, 000). The size and resistivity of the

sheet ar.e the same as in Figure 5 with _ = 0.32 mm and ;L = 3 cm.

Comparison of the measured RCS (***) reduction at normal incidence

with the numerical summation (19) (_) and the Fresnel integral
approximation (15) (---) for a one dimensionally curved rectangular

section of a coleus leaf versus radius of curvature (t = 0.32 ram, X = 3 cm).

2;_



Figure 10:

Figure 11 :

Figure A-l:

Comparison of the measured F!CS (***) reduction at normal incidence

with the numerical summation (19) (--) and the Fresnel integral

approximation (21) (---) for a spherically curved section of a coleus leaf

versus radius of curvature (t = 3.32 mm, Z = 3 cm).

Normal incidence RCS reducticm versus frequency due to the one

dimensional curvature of a rectangular section of a leaf with Mg = 0.7 and

'¢ = 0.5 mm for three different radii of curvature using the numerical (9)

(__) and analytical (15) (---) expressions.

Geometry for the scattering of a plane wave by a tilted resistive sheet.
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